Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present high-resolution WIYN/NEID echelle spectroscopy (R ≈ 70,000) of the supernova (SN) 2023ixf in M101, obtained 1.51 to 18.51 days after explosion over nine epochs. Daily monitoring for the first 4 days after explosion shows narrow emission features (≤200 km s−1), exhibiting predominantly blueshifted velocities that rapidly weaken, broaden, and vanish in a manner consistent with radiative acceleration and the SN shock eventually overrunning or enveloping the full extent of the dense circumstellar medium (CSM). The most rapid evolution is in the Heiemission, which is visible on day 1.51 but disappears by day 2.62. We measure the maximum pre-SN speed of Heito be 25 km s−1, where the error is attributable to the uncertainty in how much the Heihad already been radiatively accelerated and to measurement of the emission-line profile. The radiative acceleration of CSM is likely driven by the shock–CSM interaction, and the CSM is accelerated to ≥200 km s−1before being completely swept up by the SN shock to ∼2000 km s−1. We compare the observed spectra with spherically symmetric r1w6bHERACLES/CMFGENmodel spectra and find the line evolution to generally be consistent with radiative acceleration, optical depth effects, and evolving ionization state. The progenitor of SN 2023ixf underwent an enhanced mass-loss phase ≳4 yr prior to core collapse, creating a dense, asymmetric CSM region extending out to approximatelyrCSM = 3.7 × 1014(vshock/9500 km s−1) cm.more » « lessFree, publicly-accessible full text available April 28, 2026
- 
            Abstract We present the results from our extensive hard-to-soft X-ray (NuSTAR, Swift-XRT, XMM-Newton, Chandra) and meter-to-millimeter-wave radio (Giant Metrewave Radio Telescope, Very Large Array, NOEMA) monitoring campaign of the very nearby (d = 6.9 Mpc) Type II supernova (SN) 2023ixf spanning ≈4–165 days post-explosion. This unprecedented data set enables inferences on the explosion’s circumstellar medium (CSM) density and geometry. In particular, we find that the luminous X-ray emission is well modeled by thermal free–free radiation from the forward shock with rapidly decreasing photoelectric absorption with time. The radio spectrum is dominated by synchrotron radiation from the same shock. Similar to the X-rays, the level of free–free absorption affecting the radio spectrum rapidly decreases with time as a consequence of the shock propagation into the dense CSM. While the X-ray and the radio modeling independently support the presence of a dense medium corresponding to an effective mass-loss rate atR = (0.4–14) × 1015cm (forvw = 25 km s−1), our study points at a complex CSM density structure with asymmetries and clumps. The inferred densities are ≈10–100 times those of typical red supergiants, indicating an extreme mass-loss phase of the progenitor in the ≈200 yr preceding core collapse, which leads to the most X-ray luminous Type II SN and the one with the most delayed emergence of radio emission. These results add to the picture of the complex mass-loss history of massive stars on the verge of collapse and demonstrate the need for panchromatic campaigns to fully map their intricate environments.more » « lessFree, publicly-accessible full text available May 14, 2026
- 
            The linear polarization of the optical continuum of type II supernovae (SNe), together with its temporal evolution is a promising source of information about the large-scale geometry of their ejecta. To help access this information, we undertook 2D polarized radiative transfer calculations to map the possible landscape of type II SN continuum polarization (Pcont) from 20 to 300 days after explosion. Our simulations were based on crafted 2D axisymmetric ejecta constructed from 1D nonlocal thermodynamic equilibrium time-dependent radiative transfer calculations for the explosion of a red supergiant star. Following the approach used in our previous work on SN 2012aw, we considered a variety of bipolar explosions in which spherical symmetry is broken by material within ~30° of the poles that has a higher kinetic energy (up to a factor of two) and higher56Ni abundance (up to a factor of about five, allowing for56Ni at high velocity). Our set of eight 2D ejecta configurations produced considerable diversity inPcont(λ~ 7000 Å), although its maximum of 1–4% systematically occurs around the transition to the nebular phase. Before and after this transition,Pcontmay be null, constant, rising, or decreasing, which is caused by the complex geometry of the depth-dependent density and ionization and also by optical depth effects. Our modest angle-dependent explosion energy can yield aPcontof 0.5–1% at early times. Residual optical-depth effects can yield an angle-dependent SN brightness and constant polarization at nebular times. The observed values ofPconttend to be lower than obtained here. This suggests that more complicated geometries with competing large-scale structures cancel the polarization. Extreme asymmetries seem to be excluded.more » « less
- 
            Abstract Supernova (SN) 2014C is a rare transitional event that exploded as a hydrogen-poor, helium-rich Type Ib SN and subsequently interacted with a hydrogen-rich circumstellar medium (CSM) a few months postexplosion. This unique interacting object provides an opportunity to probe the mass-loss history of a stripped-envelope SN progenitor. Using the James Webb Space Telescope (JWST), we observed SN 2014C with the Mid-Infrared Instrument Medium Resolution Spectrometer at 3477 days postexplosion (rest frame), and the Near-Infrared Spectrograph Integral Field Unit at 3568 days postexplosion, covering 1.7–25μm. The bolometric luminosity indicates that the SN is still interacting with the same CSM that was observed with the Spitzer Space Telescope 40–1920 days postexplosion. JWST spectra and near-contemporaneous optical and near-infrared spectra show strong [Neii] 12.831μm, He 1.083μm, Hα, and forbidden oxygen ([Oi]λλ6300, 6364, [Oii]λλ7319, 7330, and [Oiii]λλ4959, 5007) emission lines with asymmetric profiles, suggesting a highly asymmetric CSM. The mid-IR continuum can be explained by ∼0.036M⊙of carbonaceous dust at ∼300 K and ∼0.043M⊙of silicate dust at ∼200 K. The observed dust mass has increased tenfold since the last Spitzer observation 4 yr ago, with evidence suggesting that new grains have condensed in the cold dense shell between the forward and reverse shocks. This dust mass places SN 2014C among the dustiest SNe in the mid-IR and supports the emerging observational trend that SN explosions produce enough dust to explain the observed dust mass at high redshifts.more » « lessFree, publicly-accessible full text available May 23, 2026
- 
            Abstract Dust from core-collapse supernovae (CCSNe), specifically Type IIP supernovae (SNe IIP), has been suggested to be a significant source of the dust observed in high-redshift galaxies. CCSNe eject large amounts of newly formed heavy elements, which can condense into dust grains in the cooling ejecta. However, infrared (IR) observations of typical CCSNe generally measure dust masses that are too small to account for the dust production needed at high redshifts. Type IIn SNe (SNe IIn), classified by their dense circumstellar medium, are also known to exhibit strong IR emission from warm dust, but the dust origin and heating mechanism have generally remained unconstrained because of limited observational capabilities in the mid-IR (MIR). Here, we present a JWST/MIRI Medium Resolution Spectrograph spectrum of the SN IIn SN 2005ip nearly 17 yr post-explosion. The SN IIn SN 2005ip is one of the longest-lasting and most well-studied SNe observed to date. Combined with a Spitzer MIR spectrum of SN 2005ip obtained in 2008, this data set provides a rare 15 yr baseline, allowing for a unique investigation of the evolution of dust. The JWST spectrum shows the emergence of an optically thin silicate dust component (≳0.08M⊙) that is either not present or more compact/optically thick in the earlier Spitzer spectrum. Our analysis shows that this dust is likely newly formed in the cold, dense shell (CDS), between the forward and reverse shocks, and was not preexisting at the time of the explosion. There is also a smaller mass of carbonaceous dust (≳0.005M⊙) in the ejecta. These observations provide new insights into the role of SN dust production, particularly within the CDS, and its potential contribution to the rapid dust enrichment of the early Universe.more » « lessFree, publicly-accessible full text available May 29, 2026
- 
            Abstract We present ultraviolet, optical, and near-infrared photometric and optical spectroscopic observations of the luminous fast blue optical transient (LFBOT) CSS 161010:045834–081803 (CSS 161010). The transient was found in a low-redshift (z= 0.033) dwarf galaxy. The light curves of CSS 161010 are characterized by an extremely fast evolution and blue colors. TheV-band light curve shows that CSS 161010 reaches an absolute peak of mag in 3.8 days from the start of the outburst. After maximum, CSS 161010 follows a power-law decline ∝t−2.8±0.1in all optical bands. These photometric properties are comparable to those of well-observed LFBOTs such as AT 2018cow, AT 2020mrf, and AT 2020xnd. However, unlike these objects, the spectra of CSS 161010 show a remarkable transformation from a blue and featureless continuum to spectra dominated by very broad, entirely blueshifted hydrogen emission lines with velocities of up to 10% of the speed of light. The persistent blueshifted emission and the lack of any emission at the rest wavelength of CSS 161010 are unique features not seen in any transient before CSS 161010. The combined observational properties of CSS 161010 and itsM*∼ 108M⊙dwarf galaxy host favor the tidal disruption of a star by an intermediate-mass black hole as its origin.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract SN 2023ixf was discovered in M101 within a day of the explosion and rapidly classified as a Type II supernova with flash features. Here we present ultraviolet (UV) spectra obtained with the Hubble Space Telescope 14, 19, 24, and 66 days after the explosion. Interaction between the supernova ejecta and circumstellar material (CSM) is seen in the UV throughout our observations in the flux of the first three epochs and asymmetric Mgiiemission on day 66. We compare our observations to CMFGEN supernova models that include CSM interaction ( M⊙yr−1) and find that the power from CSM interaction is decreasing with time, fromLsh≈ 5 × 1042erg s−1toLsh≈ 1 × 1040erg s−1between days 14 and 66. We examine the contribution of individual atomic species to the spectra on days 14 and 19, showing that the majority of the features are dominated by iron, nickel, magnesium, and chromium absorption in the ejecta. The UV spectral energy distribution of SN 2023ixf sits between that of supernovae, which show no definitive signs of CSM interaction, and those with persistent signatures assuming the same progenitor radius and metallicity. Finally, we show that the evolution and asymmetric shape of the Mgiiλλ2796, 2802 emission are not unique to SN 2023ixf. These observations add to the early measurements of dense, confined CSM interaction, tracing the mass-loss history of SN 2023ixf to ∼33 yr prior to the explosion and the density profile to a radius of ∼5.7 × 1015cm. They show the relatively short evolution from a quiescent red supergiant wind to high mass loss.more » « less
- 
            null (Ed.)Type II supernovae (SNe) often exhibit a linear polarization, arising from free-electron scattering, with complicated optical signatures, both in the continuum and in lines. Focusing on the early nebular phase, at a SN age of 200 d, we conduct a systematic study of the polarization signatures associated with a 56 Ni “blob” that breaks spherical symmetry. Our ansatz, supported by nonlocal thermodynamic equilibrium radiative transfer calculations, is that the primary role of such a 56 Ni blob is to boost the local density of free electrons, which is otherwise reduced following recombination in Type II SN ejecta. Using 2D polarized radiation transfer modeling, we explore the influence of such an electron-density enhancement, varying its magnitude N e, fac , its velocity location V blob , and its spatial extent. For plausible N e, fac values of a few tens, a high-velocity blob can deliver a continuum polarization P cont of 0.5–1.0% at 200 d. Our simulations reproduce the analytic scalings for P cont , and in particular the linear growth with the blob radial optical depth. The most constraining information is, however, carried by polarized line photons. For a high V blob , the polarized spectrum appears as a replica of the full spectrum, scaled down by a factor of 100–1000 (i.e., 1∕ P cont ) and redshifted by an amount V blob (1 − cos α los ), where α los is the line-of-sight angle. As V blob is reduced, the redshift decreases and the replication deteriorates. Lines whose formation region overlaps with the blob appear weaker and narrower in the polarized flux. Because of its dependence on inclination (∝ sin 2 α los ), the polarization preferentially reveals asymmetries in the plane perpendicular to the line-of-sight ( α los = 90 deg). This property also weakens the broadening of lines in the polarized flux. With the adequate choice of electron-density enhancement, some of these results may apply to asymmetric explosions in general or to the polarization signatures from newly formed dust in the outer ejecta.more » « less
- 
            null (Ed.)We present VLT–FORS spectropolarimetric observations of the type II supernova (SN) 2012aw taken at seven epochs during the photospheric phase, from 16 to 120 d after explosion. We corrected for interstellar polarization by postulating that the SN polarization is naught near the rest wavelength of the strongest lines – this is later confirmed by our modeling. SN 2012aw exhibits intrinsic polarization, with strong variations across lines, and with a magnitude that grows in the 7000 Å line-free region from 0.1% at 16 d up to 1.2% at 120 d. This behavior is qualitatively similar to observations gathered for other type II SNe. A suitable rotation of Stokes vectors places the bulk of the polarization in q , suggesting the ejecta of SN 2012aw is predominantly axisymmetric. Using an upgraded version of our 2D polarized radiative transfer code, we modeled the wavelength- and time-dependent polarization of SN 2012aw. The key observables may be explained by the presence of a confined region of enhanced 56 Ni at ~4000 km s −1 , which boosts the electron density in a cone having an opening angle of ~50 deg and an observer’s inclination of ~70 deg to the axis of symmetry. With this fixed asymmetry in time, the observed evolution of the SN 2012aw polarization arises from the evolution of the ejecta optical depth, ionization, and the relative importance of multiple versus single scattering. However, the polarization signatures exhibit numerous degeneracies. Cancellation effects at early times imply that low polarization may even occur for ejecta with a large asymmetry. An axisymmetric ejecta with a latitudinal-dependent explosion energy can also yield similar polarization signatures as asymmetry in the 56 Ni distribution. In spite of these uncertainties, SN 2012aw provides additional evidence for the generic asymmetry of type II SN ejecta, of which VLT–FORS spectropolarimetric observations are a decisive and exquisite probe.more » « less
- 
            The gravitationally lensed supernova Refsdal appeared in multiple images produced through gravitational lensing by a massive foreground galaxy cluster. After the supernova appeared in 2014, lens models of the galaxy cluster predicted that an additional image of the supernova would appear in 2015, which was subsequently observed. We use the time delays between the images to perform a blinded measurement of the expansion rate of the Universe, quantified by the Hubble constant (H0). Using eight cluster lens models, we infer . Using the two models most consistent with the observations, we find . The observations are best reproduced by models that assign dark-matter halos to individual galaxies and the overall cluster.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
